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Figure 2.14"ihe basic structure of a FP unit using Tomasulo’s algorithm and
extended to handle speculation. Comparing this to Figure 2.9 on page 94, which
implemented Tomasulo’s algorithm, the major change is the addition of the ROB and
the elimination of the store buffer, whose function is integrated into the ROB. This
mechanism can be extended to multiple issue by making the CDB wider to allow for
multiple completions per clock.

or the ROB. Update the control entries to indicate the buffers are in use. The
number of the ROB entry allocated for the result is also sent to the reservation
station, so that the number can be used to tag the result when it is placed on
the CDB. If either all reservations are full or the ROB is full, then instruction
issue is stalled until both have available entries.

2. Execute—If one or more of the operands is not yet available, monitor the
CDB while waiting for the register to be computed. This step checks for
RAW hazards. When both operands are available at a reservation station, exe-
cute the operation. Instructions may take multiple clock cycles in this stage,
and loads still require two steps in this stage. Stores need only have the base
register available at this step, since execution for a store at this point is only
effective address calculation.
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3. Write result—When the result is available, write it on the CDB (with the
ROB tag sent when the instruction issued) and from the CDB into the ROB,
as well as to any reservation stations waiting for this result. Mark the reser-
vation station as available. Special actions are required for store instruc-
tions. If the value to be stored is available, it is written into the Value field
of the ROB entry for the store. If the value to be stored is not available yet,
the CDB must be monitored until that value is broadcast, at which time the
Value field of the ROB entry of the store is updated. For simplicity we
assume that this occurs during the Write Results stage of a store; we discuss
relaxing this requirement later.

4. Commir—This is the final stage of completing an instruction, after which
only its result remains. (Some processors call this commit phase “comple-
tion” or “graduation.”) There are three different sequences of actions at com-
mit depending on whether the committing instruction is a branch with an
incorrect prediction, a store, or any other instruction (normal commit). The
normal commit case occurs when an instruction reaches the head of the ROB
and its result is present in the buffer; at this point, the processor updates the
register with the result and removes the instruction from the ROB. Commit-
ting a store is similar except that memory is updated rather than a result regis-
ter. When a branch with incorrect prediction reaches the head of the ROB, it
indicates that the speculation was wrong. The ROB is flushed and execution
is restarted at the correct successor of the branch. If the branch was correctly
predicted, the branch is finished.

Once an instruction commits, its entry in the ROB is reclaimed and the regis-
ter or memory destination is updated, eliminating the need for the ROB entry. If
the ROB fills, we simply stop issuing instructions until an entry is made free.
Now, let’s examine how this scheme would work with the same example we used
for Tomasulo’s algorithm.

Example

Answer

Assume the same latencies for the floating-point functional units as in earlier exam-
ples: add is 2 clock cycles, multiply is 6 clock cycles, and divide is 12 clock cycles.
Using the code segment below, the same one we used to generate Figure 2.11, show
what the status tables look like when the MUL. D is ready to go to commit.

L.D F6,32(R2)
L.D F2,44(R3)
MUL.D FO,F2,F4
SuB.D F8,F6,F2
DIV.D F10,F0,F6
ADD.D F6,F8,F2

Figure 2.15 shows the result in the three tables. Notice that although the SUB.D
instruction has completed execution, it does not commit until the MUL . D commits.
The reservation stations and register status field contain the same basic informa-



2.6 Hardware-Based Speculation = 109

tion that they did for Tomasulo’s algorithm (see page 97 for a description of those
fields). The differences are that reservation station numbers are replaced with
ROB entry numbers in the Qj and Qk fields, as well as in the register status fields,
and we have added the Dest field to the reservation stations. The Dest field desig-
nates the ROB entry that is the destination for the result produced by this reserva-
tion station entry.

The above example illustrates the key important difference between a proces-
sor with speculation and a processor with dynamic scheduling. Compare the con-
tent of Figure 2.15 with that of Figure 2.11 on page 100, which shows the same
code sequence in operation on a processor with Tomasulo’s algorithm. The key
difference is that, in the example above, no instruction after the earliest uncom-
pleted instruction (MUL.D above) is allowed to complete. In contrast, in
Figure 2.11 the SUB.D and ADD.D instructions have also completed.

One implication of this difference is that the processor with the ROB can
dynamically execute code while maintaining a precise interrupt model. For
example, if the MUL. D instruction caused an interrupt, we could simply wait until
it reached the head of the ROB and take the interrupt, flushing any other pending
instructions from the ROB. Because instruction commit happens in order, this
yields a precise exception.

By contrast, in the example using Tomasulo’s algorithm, the SUB.D and
ADD.D instructions could both complete before the MUL.D raised the exception.
The result is that the registers F8 and F6 (destinations of the SUB.D and ADD.D
instructions) could be overwritten, and the interrupt would be imprecise.

Some users and architects have decided that imprecise floating-point excep-
tions are acceptable in high-performance processors, since the program will
likely terminate; see Appendix G for further discussion of this topic. Other types
of exceptions, such as page faults, are much more difficult to accommodate if
they are imprecise, since the program must transparently resume execution after
handling such an exception.

The use of a ROB with in-order instruction commit provides precise excep-
tions, in addition to supporting speculative execution, as the next example shows.

Example

Consider the code example used earlier for Tomasulo’s algorithm and shown in
Figure 2.13 in execution:

Loop: L.D FO,0(R1)
MUL.D F4,F0,F2
S.D F4,0(R1)
DADDIU R1,R1,#-8
BNE R1,R2,Loop ;branches if R1#R2

Assume that we have issued all the instructions in the loop twice. Let’s also
assume that the L.D and MUL.D from the first iteration have committed and all
other instructions have completed execution. Normally, the store would wait in
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Reorder buffer

Entry Busy Instruction State Destination Value

1 no L.D F6,32(R2) Commit F6 Mem([34 + Regs[R2]]
2 no L.D F2,44(R3) Commit F2 = Mem|[45 + Regs[R3]]
3 yes MUL.D FO,F2,F4 Write result FO #2 x Regs[F4]

4 yes SUB.D F8,F2,F6 Write result F8 #2 - #1

5 yes DIV.D F10,F0,F6 Execute F10

6 yes ADD.D F6,F8,F2 Write result F6 #4 +#2

Reservation stations

Name Busy Op Vj Vk : Qj Qk Dest A
Loadl no

Load2 no

Add1 no

Add2 no

Add3 no

Mult1 no MUL.D Mem(45 + Regs[R3]]  Regs[F4] #3

Mult2 yes DIV.D Mem[34 + Regs[R2]] #3 #5

FP register status

Field FO F1 F2 F3 F4 F5 F6 F7 F8 F10
Reorder # 3 6 4 5
Busy yes no no no no no yes el yes yes

Figure 2.15 At the time the MUL.D is ready to commit, only the two L.D instructions have committed, although
several others have completed execution. The MUL.D is at the head of the ROB, and the two L.D instructions are
there only to ease understanding. The SUB.D and ADD.D instructions will not commit until the MUL.D instruction
commits, although the results of the instructions are available and can be used as sources for other instructions.
The DIV.D is in execution, but has not completed solely due to its longer latency than MUL.D. The Value column
indicates the value being held; the format #X is used to refer to a value field of ROB entry X.Reorder buffers 1 and
2 are actually completed, but are shown for informational purposes. We do not show the entries for the load-store
queue, but these entries are kept in order.

Answer

the ROB for both the effective address operand (R1 in this example) and the
value (F4 in this example). Since we are only considering the floating-point pipe-
line, assume the effective address for the store is computed by the time the
instruction is issued.

Figure 2.16 shows the result in two tables.
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Reorder buffer
Entry Busy Instruction State Destination Value
1 no L.D FO,0(R1) Commit FO Mem[0 +
Regs[R1]]
2 no MUL.D F4,F0,F2 Commit F4 #1 x Regs[F2]
3 yes S.D F4,0(R1) Write result 0 + Regs[R1] #2
4 yes DADDIU R1,R1,#-8 Write result R1 Regs[R1] -8
5 yes BNE R1,R2,Loop Write result
6 yes L.D F0,0(R1) Write result FO Mem[#4]
7 yes MUL.D F4,F0,F2 Write result F4 #6 X Regs[F2]
8 yes S.D F4,0(R1) Write result 0+ #4 #7
9 yes DADDIU R1,R1,#-8 Write result R1 #4 -8
10 yes BNE R1,R2,Loop Write result
FP register status
Field FO F1 F2 F3 F4 F5 F6 F7 F8
Reorder # 6 7
Busy yes no no no yes no - no no

Figure 2.16 Only the L.D and MUL.D instructions have committed, although all the others have completed exe-
cution. Hence, no reservation stations are busy and none are shown. The remaining instructions will be committed
as fast as possible. The first two reorder buffers are empty, but are shown for completeness.

Because neither the register values nor any memory values are actually writ-
ten until an instruction commits, the processor can easily undo its speculative
actions when a branch is found to be mispredicted. Suppose that the branch BNE
is not taken the first time in Figure 2.16. The instructions prior to the branch will
simply commit when each reaches the head of the ROB; when the branch reaches
the head of that buffer, the buffer is simply cleared and the processor begins
fetching instructions from the other path.

In practice, processors that speculate try to recover as early as possible after a
branch is mispredicted. This recovery can be done by clearing the ROB for all
entries that appear after the mispredicted branch, allowing those that are before
the branch in the ROB to continue, and restarting the fetch at the correct branch
successor. In speculative processors, performance is more sensitive to the branch
prediction, since the impact of a misprediction will be higher. Thus, all the
aspects of handling branches—prediction accuracy, latency of misprediction
detection, and misprediction recovery time—increase in importance.

Exceptions are handled by not recognizing the exception until it is ready to
commit. If a speculated instruction raises an exception, the exception is recorded
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in the ROB. If a branch misprediction arises and the instruction should not have
been executed, the exception is flushed along with the instruction when the ROB
is cleared. If the instruction reaches the head of the ROB, then we know it is no
longer speculative and the exception should really be taken. We can also try to
handle exceptions as soon as they arise and all earlier branches are resolved, but
this is more challenging in the case of exceptions than for branch mispredict and,
because it occurs less frequently, not as critical.

Figure 2.17 shows the steps of execution for an instruction, as well as the
conditions that must be satisfied to proceed to the step and the actions taken. We
show the case where mispredicted branches are not resolved until commit.
Although speculation seems like a simple addition to dynamic scheduling, a
comparison of Figure 2.17 with the comparable figure for Tomasulo’s algorithm
in Figure 2.12 shows that speculation adds significant complications to the con-
trol. In addition, remember that branch mispredictions are somewhat more com-
plex as well.

There is an important difference in how stores are handled in a speculative
processor versus in Tomasulo’s algorithm. In Tomasulo’s algorithm, a store can
update memory when it reaches Write Result (which ensures that the effective
address has been calculated) and the data value to store is available. In a specula-
tive processor, a store updates memory only when it reaches the head of the ROB.
This difference ensures that memory is not updated until an instruction is no
longer speculative.

Figure 2.17 has one significant simplification for stores, which is unneeded in
practice. Figure 2.17 requires stores to wait in the Write Result stage for the reg-
ister source operand whose value is to be stored; the value is then moved from the
Vk field of the store’s reservation station to the Value field of the store’s ROB
entry. In reality, however, the value to be stored need not arrive until just before
the store commits and can be placed directly into the store’s ROB entry by the
sourcing instruction. This is accomplished by having the hardware track when the
source value to be stored is available in the store’s ROB entry and searching the
ROB on every instruction completion to look for dependent stores.

This addition is not complicated, but adding it has two effects: We would
need to add a field to the ROB, and Figure 2.17, which is already in a small font,
would be even longer! Although Figure 2.17 makes this simplification, in our
examples, we will allow the store to pass through the Write Result stage and sim-
ply wait for the value to be ready when it commits.

Like Tomasulo’s algorithm, we must avoid hazards through memory. WAW
and WAR hazards through memory are eliminated with speculation because the
actual updating of memory occurs in order, when a store is at the head of the
ROB, and hence, no earlier loads or stores can still be pending. RAW hazards
through memory are maintained by two restrictions:

1. not allowing a load to initiate the second step of its execution if any active
ROB entry occupied by a store has a Destination field that matches the value
of the A field of the load, and
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Status Wait until Action or bookkeeping
Issue if (RegisterStat[rs].Busy)/*in-flight instr. writes rs*/
all {h « RegisterStat[rs].Reorder;
instructions if (ROB[h].Ready)/* Instr completed already *{
{RS{r].Vj « ROB[h].Value; RS[r].Qj « O;
. else {RS[r].Qj « h;} /* wait for instruction */
Reservation } else {RS[r1.Vj « Regs[rs]; RS[r].Qi « 0;};
station (1) RS[r].Busy « yes; RS[r].Dest « b;
aRngB ®) ROB[b].Instruction « opcode; ROB[b].Dest « rd;ROB[b] .Ready ¢« no;
FP both available if (RegisterStat[rt].Busy) /*in-flight instr writes rt*/
operations {h « RegisterStat[rt].Reorder;
and stores if (ROB[h].Ready)/* Instr completed already *{
{RS[r].Vk « ROB[h].vValue; RS[r].Qk « 0;
else {RS[r].Qk « h;} /* wait for instruction */
} else {RS[r].Vk « Regs[rt]; RS[r].Qk « 0;:};
FP RegisterStat[rd].Reorder « b; RegisterStat[rd] .Busy « yes;
operations ROB[b] .Dest « rd;
Loads RS[r].A « imm; RegisterStat[rt].Reorder « b;
RegisterStat[rt].Busy « yes; ROB[b].Dest « rt;
Stores RS[r].A « imm;
Execute (RS[1].Qj==0)and Compute results—operands are in Vj and Vk
FP op (RS{r].Qk == 0)
Loadstep1 (RS[r].Qj==0)and RS[r].A « RS[r].Vj + RS[r].A;
there are no stores
earlier in the queue
Loadstep2 Load step 1 done Read from Mem[RS[r].A]
and all stores earlier
in ROB have
different address
Store (RS[r).Qj == 0) and ROB[h] .Address « RS[r].Vj + RS[r].A;
store at queue head
Write result  Executiondoneatr b « RS[r].Dest; RS[r].Busy « no;
all but store and CDB available Vx(if (RS[x].Qj==b) {RS[x].Vj « result; RS[x].Qj « 0});
vx(if (RS[x].Qk==b) {RS[x].Vk « result; RS[x].Qk « 0});
ROB[b] .Value « result; ROB[b].Ready « yes;
Store Execution done at r ROB[h] .Value « RS[r].Vk;
and (RS[r].Qk ==
0)
Commit Instruction is at the d « ROB[h].Dest; /* register dest, if exists */
head of the ROB if (ROB[h].Instruction==Branch)
(entry h) and {if (branch is mispredicted)
ROB[h].ready == {clear ROB[h], RegisterStat; fetch branch dest;};}
yes else if (ROB[h].Instruction==Store)

{Mem[ROB[h] .Destination] « ROB[h].Value;}
else /* put the result in the register destination */
{Regs[d] « ROB[h].value;};
ROB[h] .Busy « no; /* free up ROB entry */
/* free up dest register if no one else writing it */
if (RegisterStat[d?.Reorde ==h) {RegisterStat[d].Busy « no;};

Figure 2.17 Step!

s in the algorithm and what is required for each step. For the issuing instruction, rd is the destina-

tion, rs and rt are the sources,  is the reservation station allocated, b is the assigned ROB entry, and h is the head entry of
the ROB. RS is the reservation station data structure.The value returned by a reservation station is called the result.Reg-
isterStat is the register data structure, Regs represents the actual registers, and ROB is the reorder buffer data structure.
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2. maintaining the program order for the computation of an effective address of
a load with respect to all earlier stores.

Together, these two restrictions ensure that any load that accesses a memory loca-
tion written to by an earlier store cannot perform the memory access until the
store has written the data. Some speculative processors will actually bypass the
value from the store to the load directly, when such a RAW hazard occurs.
Another approach is to predict potential collisions using a form of value predic-
tion; we consider this in Section 2.9.

Although this explanation of speculative execution has focused on floating
point, the techniques easily extend to the integer registers and functional units, as
we will see in the “Putting It All Together” section. Indeed, speculation may be
more useful in integer programs, since such programs tend to have code where
the branch behavior is less predictable. Additionally, these techniques can be
extended to work in a multiple-issue processor by allowing multiple instructions
to issue and commit every clock. In fact, speculation is probably most interesting
in such processors, since less ambitious techniques can probably exploit suffi-
cient ILP within basic blocks when assisted by a compiler.

Exploiting ILP Using Multiple Issue and Static
Scheduling

The techniques of the preceding sections can be used to eliminate data and con-
trol stalls and achieve an ideal CPI of one. To improve performance further we
would like to decrease the CPI to less than one. But the CPI cannot be reduced
below one if we issue only one instruction every clock cycle.

The goal of the multiple-issue processors, discussed in the next few sections,
is to allow multiple instructions to issue in a clock cycle. Multiple-issue proces-
sors come in three major flavors:

1. statically scheduled superscalar processors,
2. VLIW (very long instruction word) processors, and
3. dynamically scheduled superscalar processors.

The two types of superscalar processors issue varying numbers of instructions
per clock and use in-order execution if they are statically scheduled or out-of-
order execution if they are dynamically scheduled.

VLIW processors, in contrast, issue a fixed number of instructions formatted
either as one large instruction or as a fixed instruction packet with the parallel-
ism among instructions explicitly indicated by the instruction. VLIW processors
are inherently statically scheduled by the compiler. When Intel and HP created
the IA-64 architecture, described in Appendix G, they also introduced the name
EPIC—explicitly parallel instruction computer—for this architectural style.
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Issue Hazard Distinguishing
Common name  structure detection  Scheduling  characteristic Examples
Superscalar dynamic hardware static in-order execution mostly in the
(static) embedded space:
MIPS and ARM
Superscalar dynamic hardware dynamic some out-of-order none at the present
(dynamic) execution, but no
speculation
Superscalar dynamic hardware dynamic with  out-of-order execution Pentium 4,
(speculative) speculation with speculation MIPS R12K, IBM
Power5
VLIW/LIW static primarily static all hazards determined most examples are in
software and indicated by compiler the embedded space,
(often implicitly) such as the TI C6x
EPIC primarily static primarily mostly static  all hazards determined Itanium
software and indicated explicitly
by the compiler

Figure 2.18 The five primary approaches in use for multiple-issue processors and the primary characteristics
that distinguish them. This chapter has focused on the hardware-intensive techniques, which are all some form of
superscalar. Appendix G focuses on compiler-based approaches. The EPIC approach, as embodied in the IA-64 archi-
tecture, extends many of the concepts of the early VLIW approaches, providing a blend of static and dynamic

approaches.

Although statically scheduled superscalars issue a varying rather than a fixed
number of instructions per clock, they are actually closer in concept to VLIWs,
since both approaches rely on the compiler to schedule code for the processor.
Because of the diminishing advantages of a statically scheduled superscalar as the
issue width grows, statically scheduled superscalars are used primarily for narrow
issue widths, normally just two instructions. Beyond that width, most designers
choose to implement either a VLIW or a dynamically scheduled superscalar.
Because of the similarities in hardware and required compiler technology, we
focus on VLIWs in this section. The insights of this section are easily extrapolated
to a statically scheduled superscalar.

Figure 2.18 summarizes the basic approaches to multiple issue and their dis-
tinguishing characteristics and shows processors that use each approach.

The Basic VLIW Approach

VLIWs use multiple, independent functional units. Rather than attempting to
issue multiple, independent instructions to the units, a VLIW packages the multi-
ple operations into one very long instruction, or requires that the instructions in
the issue packet satisfy the same constraints. Since there is no fundamental
difference in the two approaches, we will just assume that multiple operations are
placed in one instruction, as in the original VLIW approach.
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Since this advantage of a VLIW increases as the maximum issue rate grows,
we focus on a wider-issue processor. Indeed, for simple two-issue processors, the
overhead of a superscalar is probably minimal. Many designers would probably
argue that a four-issue processor has manageable overhead, but as we will see in
the next chapter, the growth in overhead is a major factor limiting wider-issue
Pprocessors.

Let’s consider a VLIW processor with instructions that contain five opera-
tions, including one integer operation (which could also be a branch), two float-
ing-point operations, and two memory references. The instruction would have a
set of fields for each functional unit—perhaps 1624 bits per unit, yielding an
instruction length of between 80 and 120 bits. By comparison, the Intel Itanium 1
and 2 contain 6 operations per instruction packet.

To keep the functional units busy, there must be enough parallelism in a code
sequence to fill the available operation slots. This parallelism is uncovered by
unrolling loops and scheduling the code within the single larger loop body. If the
unrolling generates straight-line code, then local scheduling techniques, which
operate on a single basic block, can be used. If finding and exploiting the paral-
lelism requires scheduling code across branches, a substantially more complex
global scheduling algorithm must be used. Global scheduling algorithms are not
only more complex in structure, but they also must deal with significantly more
complicated trade-offs in optimization, since moving code across branches is
expensive.

In Appendix G, we will discuss trace scheduling, one of these global schedul-
ing techniques developed specifically for VLIWs; we will also explore special
hardware support that allows some conditional branches to be eliminated, extend-
ing the usefulness of local scheduling and enhancing the performance of global
scheduling.

For now, we will rely on loop unrolling to generate long, straight-line code
sequences, so that we can use local scheduling to build up VLIW instructions and
focus on how well these processors operate.

Example

Answer

Suppose we have a VLIW that could issue two memory references, two FP oper-
ations, and one integer operation or branch in every clock cycle. Show an
unrolled version of the loop x[i] = x[i] + s (see page 76 for the MIPS code) for
such a processor. Unroll as many times as necessary to eliminate any stalls.
Ignore delayed branches.

Figure 2.19 shows the code. The loop has been unrolled to make seven copies of
the body, which eliminates all stalls (i.e., completely empty issue cycles), and
runs in 9 cycles. This code yields a running rate of seven results in 9 cycles, or
1.29 cycles per result, nearly twice as fast as the two-issue superscalar of Section
2.2 that used unrolled and scheduled code.
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Memory
reference 1

Memory
reference 2

FP
operation 1

FP
operation 2

Integer
operation/branch

L.D

FO,0(R1)

L.D F6,-8(R1)

F10,-16(R1)

L.D F14,-24(R1)

F18,-32(R1)

L.D F22,-40(R1)

ADD.D F4,F0,F2

ADD.D F8,F6,F2

L
L.
L

ojlo|o

F26,-48(R1)

ADD.D F12,F10,F2

ADD.D F16,F14,F2

ADD.D F20,F18,F2

ADD.D F24,F22,F2

S.D F4,0(R1) S.D F8,-8(R1) ADD.D F28,F26,F2

S.D F12,-16(R1) S.D F16,-24(R1) DADDUI R1,R1,#-56
S.D F20,24(R1) S.D F24,16(R1)

S.D F28,8(R1) BNE R1,R2,Loop

Figure 2.19 VLIW instructions that occupy the inner loop and replace the unrolled sequence. This code takes 9
cycles assuming no branch delay; normally the branch delay would also need to be scheduled.The issue rate is 23 oper-
ations in 9 clock cycles, or 2.5 operations per cycle. The efficiency, the percentage of available slots that contained an
operation, is about 60%.To achieve this issue rate requires a larger number of registers than MIPS would normally use in
this loop. The VLIW code sequence above requires at least eight FP registers, while the same code sequence for the base
MIPS processor can use as few as two FP registers or as many as five when unrolled and scheduled.

For the original VLIW model, there were both technical and logistical prob-
lems that make the approach less efficient. The technical problems are the
increase in code size and the limitations of lockstep operation. Two different ele-
ments combine to increase code size substantially for a VLIW. First, generating
enough operations in a straight-line code fragment requires ambitiously unrolling
loops (as in earlier examples), thereby increasing code size. Second, whenever
instructions are not full, the unused functional units translate to wasted bits in the
instruction encoding. In Appendix G, we examine software scheduling
approaches, such as software pipelining, that can achieve the benefits of unrolling
without as much code expansion.

To combat this code size increase, clever encodings are sometimes used.
For example, there may be only one large immediate field for use by any func-
tional unit. Another technique is to compress the instructions in main memory
and expand them when they are read into the cache or are decoded. In Appen-
dix G, we show other techniques, as well as document the significant code
expansion seen on 1A-64.

Early VLIWs operated in lockstep; there was no hazard detection hardware at
all. This structure dictated that a stall in any functional unit pipeline must cause
the entire processor to stall, since all the functional units must be kept synchro-
nized. Although a compiler may be able to schedule the deterministic functional
units to prevent stalls, predicting which data accesses will encounter a cache stall
and scheduling them is very difficult. Hence, caches needed to be blocking and to
cause all the functional units to stall. As the issue rate and number of memory
references becomes large, this synchronization restriction becomes unacceptable.
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In more recent processors, the functional units operate more independently, and
the compiler is used to avoid hazards at issue time, while hardware checks allow
for unsynchronized execution once instructions are issued.

Binary code compatibility has also been a major logistical problem for
VLIWs. In a strict VLIW approach, the code sequence makes use of both the
instruction set definition and the detailed pipeline structure, including both func-
tional units and their latencies. Thus, different numbers of functional units and
unit latencies require different versions of the code. This requirement makes
migrating between successive implementations, or between implementations
with different issue widths, more difficult than it is for a superscalar design. Of
course, obtaining improved performance from a new superscalar design may
require recompilation. Nonetheless, the ability to run old binary files is a practi-
cal advantage for the superscalar approach.

The EPIC approach, of which the IA-64 architecture is the primary example,
provides solutions to many of the problems encountered in early VLIW designs,
including extensions for more aggressive software speculation and methods to
overcome the limitation of hardware dependence while preserving binary com-
patibility.

The major challenge for all multiple-issue processors is to try to exploit large
amounts of ILP. When the parallelism comes from unrolling simple loops in FP
programs, the original loop probably could have been run efficiently on a vector
processor (described in Appendix F). It is not clear that a multiple-issue proces-
sor is preferred over a vector processor for such applications; the costs are simi-
lar, and the vector processor is typically the same speed or faster. The potential
advantages of a multiple-issue processor versus a vector processor are their abil-
ity to extract some parallelism from less structured code and their ability to easily
cache all forms of data. For these reasons multiple-issue approaches have become
the primary method for taking advantage of instruction-level parallelism, and
vectors have become primarily an extension to these processors.

Exploiting ILP Using Dynamic Scheduling, Multiple
Issue, and Speculation

So far, we have seen how the individual mechanisms of dynamic scheduling,
multiple issue, and speculation work. In this section, we put all three together,
which yields a microarchitecture quite similar to those in modern microproces-
sors. For simplicity, we consider only an issue rate of two instructions per clock,
but the concepts are no different from modern processors that issue three or more
instructions per clock.

Let’s assume we want to extend Tomasulo’s algorithm to support a two-issue
superscalar pipeline with a separate integer and floating-point unit, each of which
can initiate an operation on every clock. We do not want to issue instructions to
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the reservation stations out of order, since this could lead to a violation of the pro-
gram semantics. To gain the full advantage of dynamic scheduling we will allow
the pipeline to issue any combination of two instructions in a clock, using the
scheduling hardware to actually assign operations to the integer and floating-
point unit. Because the interaction of the integer and floating-point instructions is
crucial, we also extend Tomasulo’s scheme to deal with both the integer and
floating-point functional units and registers, as well as incorporating speculative
execution.

Two different approaches have been used to issue multiple instructions per
clock in a dynamically scheduled processor, and both rely on the observation that
the key is assigning a reservation station and updating the pipeline control tables.
One approach is to run this step in half a clock cycle, so that two instructions can
be processed in one clock cycle. A second alternative is to build the logic neces-
sary to handle two instructions at once, including any possible dependences
between the instructions. Modern superscalar processors that issue four or more
instructions per clock often include both approaches: They both pipeline and
widen the issue logic.

Putting together speculative dynamic scheduling with multiple issue requires
overcoming one additional challenge at the back end of the pipeline: we must be
able to complete and commit multiple instructions per clock. Like the challenge
of issuing multiple instructions, the concepts are simple, although the implemen-
tation may be challenging in the same manner as the issue and register renaming
process. We can show how the concepts fit together with an example.

Example

Answer

Consider the execution of the following loop, which increments each element of
an integer array, on a two-issue processor, once without speculation and once
with speculation:

Loop: LD R2,0(R1) ;R2=array element
DADDIU  R2,R2,#1 ;increment R2
SD R2,0(R1) ;store result
DADDIV  RI1,R1,#8 sincrement pointer
BNE R2,R3,L00P sbranch if not last element

Assume that there are separate integer functional units for effective address
calculation, for ALU operations, and for branch condition evaluation. Create a
table for the first three iterations of this loop for both processors. Assume that up
to two instructions of any type can commit per clock.

Figures 2.20 and 2.21 show the performance for a two-issue dynamically sched-
uled processor, without and with speculation. In this case, where a branch can be
a critical performance limiter, speculation helps significantly. The third branch in
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Memory

Issuesat Executesat accessat Write CDB at
Iteration clockcycle clockcycle clock cycle clock cycle
number Instructions number number number number Comment
1 LD R2,0(R1) 1 2 3 4 First issue
1 DADDIU R2,R2,#1 1 5 6 Wait for LW
1 SD R2,0(R1) 2 3 7 Wait for DADDIU
1 DADDIU R1,R1,#8 2 3 4 Execute directly
1 BNE R2,R3,L00P 3 7 Wait for DADDIU
2 LD R2,0(R1) 4 8 9 10 Wait for BNE
2 DADDIU R2,R2,#1 4 11 12 Wait for LW
2 SD R2,0(R1) 5 9 13 Wait for DADDIY
2 DADDIU R1,R1,#8 5 8 9 Wait for BNE
2 BNE R2,R3,L00P 6 13 Wait for DADDIU
3 LD R2,0(R1) 7 14 15 16 Wait for BNE
3 DADDIU R2,R2,#1 7 17 18 Wait for LW
3 SD R2,0(R1) 8 15 19 Wait for DADDIU
3 DADDIU R1,R1,#8 8 14 15 Wait for BNE
3 BNE R2,R3,L00P 9 19 Wait for DADDIU

Figure 2.20 The time of issue, execution, and writing result for a dual-issue version of our pipeline without
speculation. Note that the LD following the BNE cannot start execution earlier because it must wait until the branch
outcome is determined. This type of program, with data-dependent branches that cannot be resolved earlier, shows
the strength of speculation. Separate functional units for address calculation, ALU operations, and branch-condition
evaluation allow multiple instructions to execute in the same cycle. Figure 2.21 shows this example with speculation,

the speculative processor executes in clock cycle 13, while it executes in clock
cycle 19 on the nonspeculative pipeline. Because the completion rate on the non-
speculative pipeline is falling behind the issue rate rapidly, the nonspeculative
pipeline will stall when a few more iterations are issued. The performance of the
nonspeculative processor could be improved by allowing load instructions to
complete effective address calculation before a branch is decided, but unless
speculative memory accesses are allowed, this improvement will gain only 1
clock per iteration.

This example clearly shows how speculation can be advantageous when there
are data-dependent branches, which otherwise would limit performance. This
advantage depends, however, on accurate branch prediction. Incorrect specula-
tion will not improve performance, but will, in fact, typically harm performance.
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Write

Issues Executes Readaccess CDBat Commits
Iteration atclock atclock at clock clock at clock
number Instructions number number number number number Comment
1 LD R2,0(R1) 1 2 3 4 5 First issue
1 DADDIU R2,R2,#1 1 5 6 7 Wait for LW
1 SD R2,0(R1) 2 3 7 Wait for DADDIU
1 DADDIU R1,R1,#8 2 3 4 8 Commit in order
1 BNE R2,R3,LO0P 3 7 8 Wait for DADDIU
2 LD R2,0(R1) 4 5 6 7 9 No execute delay
2 DADDIU R2,R2,#1 4 8 9 10 Wait for LW
2 SD R2,0(R1) 5 6 10 Wait for DADDIU
2 DADDIU R1,R1,#8 5 6 7 11 Commit in order
2 BNE R2,R3,L00P 6 10 11 Wait for DADDIU
3 LD R2,0(R1) 7 8 9 10 12 Earliest possible
3 DADDIU R2,R2,#1 7 11 12 13 Wait for LW
3 SD R2,0(R1) 8 9 13 Wait for DADDIU
3 DADDIU R1,R1,#8 8 9 10 14 Executes earlier
3 BNE R2,R3,L00P 9 13 14 Wait for DADDIU

Figure 2.21 The time of issue, execution, and writing result for a dual-issue version of our pipeline with specula-
tion. Note that the LD following the BNE can start execution early because it is speculative.

Advanced Techniques for Instruction Delivery
and Speculation

In a high-performance pipeline, especially one with multiple issue, predicting
branches well is not enough; we actually have to be able to deliver a high-
bandwidth instruction stream. In recent multiple-issue processors, this has meant
delivering 4-8 instructions every clock cycle. We look at methods for increasing
instruction delivery bandwidth first. We then turn to a set of key issues in imple-
menting advanced speculation techniques, including the use of register renaming
versus reorder buffers, the aggressiveness of speculation, and a technique called
value prediction, which could further enhance ILP.

Increasing Instruction Fetch Bandwidth

A multiple issue processor will require that the average number of instructions
fetched every clock cycle be at least as large as the average throughput. Of
course, fetching these instructions requires wide enough paths to the instruction
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cache, but the most difficult aspect is handling branches. In this section we look
at two methods for dealing with branches and then discuss how modern proces-
sors integrate the instruction prediction and prefetch functions.

Branch-Target Buffers

To reduce the branch penalty for our simple five-stage pipeline, as well as for
deeper pipelines, we must know whether the as-yet-undecoded instruction is a
branch and, if so, what the next PC should be. If the instruction is a branch and
we know what the next PC should be, we can have a branch penalty of zero. A
branch-prediction cache that stores the predicted address for the next instruction
after a branch is called a branch-target buffer or branch-target cache. Figure 2.22
shows a branch-target buffer.

Because a branch-target buffer predicts the next instruction address and will
send it out before decoding the instruction, we must know whether the fetched
instruction is predicted as a taken branch. If the PC of the fetched instruction
matches a PC in the prediction buffer, then the corresponding predicted PC is
used as the next PC. The hardware for this branch-target buffer is essentially
identical to the hardware for a cache.

I" PC of instruction to fetch

Predicted PC
Number of
entries
in branch-
target
buffer
No: instruction is
not predicted to be Branch
branch; proceed normally predicted
taken or
Yes: then instruction is branch and predicted untaken
PC should be used as the next PC

Figure 2.22 A branch-target buffer.The PC of the instruction being fetched is matched
against a set of instruction addresses stored in the first column; these represent the
addresses of known branches. If the PC matches one of these entries, then the instruction
being fetched is a taken branch, and the second field, predicted PC, contains the predic-
tion for the next PC after the branch. Fetching begins immediately at that address. The
third field, which is optional, may be used for extra prediction state bits.
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If a matching entry is found in the branch-target buffer, fetching begins
immediately at the predicted PC. Note that unlike a branch-prediction buffer, the
predictive entry must be matched to this instruction because the predicted PC will
be sent out before it is known whether this instruction is even a branch. If the pro-
cessor did not check whether the entry matched this PC, then the wrong PC
would be sent out for instructions that were not branches, resulting in a slower
processor. We only need to store the predicted-taken branches in the branch-tar-
get buffer, since an untaken branch should simply fetch the next sequential
instruction, as if it were not a branch.

Figure 2.23 shows the detailed steps when using a branch-target buffer for a
simple five-stage pipeline. From this we can see that there will be no branch
delay if a branch-prediction entry is found in the buffer and the prediction is cor-
rect. Otherwise, there will be a penalty of at least 2 clock cycles. Dealing with the
mispredictions and misses is a significant challenge, since we typically will have
to halt instruction fetch while we rewrite the buffer entry. Thus, we would like to
make this process fast to minimize the penalty.

To evaluate how well a branch-target buffer works, we first must determine
the penalties in all possible cases. Figure 2.24 contains this information for the
simple five-stage pipeline.

Example Determine the total branch penalty for a branch-target buffer assuming the pen-
alty cycles for individual mispredictions from Figure 2.24. Make the following
assumptions about the prediction accuracy and hit rate:

m Prediction accuracy is 90% (for instructions in the buffer).
s Hit rate in the buffer is 90% (for branches predicted taken).

Answer We compute the penalty by looking at the probability of two events: the branch is
predicted taken but ends up being not taken, and the branch is taken but is not
found in the buffer. Both carry a penalty of 2 cycles.

Probability (branch in buffer, but actually not taken) = Percent buffer hit rate X Percent incorrect predictions
90% x 10% = 0.09

10%

(0.09 +0.10) x2

Branch penalty = 0.38

Probability (branch not in buffer, but actually taken)
Branch penalty

This penalty compares with a branch penalty for delayed branches, which we
evaluate in Appendix A, of about 0.5 clock cycles per branch. Remember, though,
that the improvement from dynamic branch prediction will grow as the pipeline
length and, hence, the branch delay grows; in addition, better predictors will
yield a larger performance advantage.
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Normal
instruction
exacution

EX

continue exacution
with no stalls

Figure 2.23 The steps involved in handling an instruction with a branch-target

buffer.

Instruction in buffer Prediction Actual branch Penalty cycles
yes taken taken

yes taken not taken 2

no taken 2

no not taken 0

Figure 2.24 Penalties for all possible combinations of whether the branch is in the
buffer and what it actually does, assuming we store only taken branches in the
buffer. There is no branch penalty if everything is correctly predicted and the branch is
found in the target buffer. If the branch is not correctly predicted, the penalty is equal
to 1 clock cycle to update the buffer with the correct information (during which an
instruction cannot be fetched) and 1 clock cycle, if needed, to restart fetching the next
correct instruction for the branch. If the branch is not found and taken, a 2-cycle pen-
alty is encountered, during which time the buffer is updated.
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One variation on the branch-target buffer is to store one or more target
instructions instead of, or in addition to, the predicted target address. This varia-
tion has two potential advantages. First, it allows the branch-target buffer access
to take longer than the time between successive instruction fetches, possibly
allowing a larger branch-target buffer. Second, buffering the actual target instruc-
tions allows us to perform an optimization called branch folding. Branch folding
can be used to obtain 0-cycle unconditional branches, and sometimes 0-cycle
conditional branches. Consider a branch-target buffer that buffers instructions
from the predicted path and is being accessed with the address of an uncondi-
tional branch. The only function of the unconditional branch is to change the PC.
Thus, when the branch-target buffer signals a hit and indicates that the branch is
unconditional, the pipeline can simply substitute the instruction from the branch-
target buffer in place of the instruction that is returned from the cache (which is
the unconditional branch). If the processor is issuing multiple instructions per
cycle, then the buffer will need to supply multiple instructions to obtain the max-
imum benefit. In some cases, it may be possible to eliminate the cost of a condi-
tional branch when the condition codes are preset.

Return Address Predictors

As we try to increase the opportunity and accuracy of speculation we face the
challenge of predicting indirect jumps, that is, jumps whose destination address
varies at run time. Although high-level language programs will generate such
jumps for indirect procedure calls, select or case statements, and FORTRAN-
computed gotos, the vast majority of the indirect jumps come from procedure
returns. For example, for the SPEC95 benchmarks, procedure returns account for
more than 15% of the branches and the vast majority of the indirect jumps on
average. For object-oriented languages like C++ and Java, procedure returns are
even more frequent. Thus, focusing on procedure returns seems appropriate.

Though procedure returns can be predicted with a branch-target buffer, the
accuracy of such a prediction technique can be low if the procedure is called from
multiple sites and the calls from one site are not clustered in time. For example,
in SPEC CPU9S, an aggressive branch predictor achieves an accuracy of less
than 60% for such return branches. To overcome this problem, some designs use
a small buffer of return addresses operating as a stack. This structure caches the
most recent return addresses: pushing a return address on the stack at a call and
popping one off at a return. If the cache is sufficiently large (i.e., as large as the
maximum call depth), it will predict the returns perfectly. Figure 2.25 shows the
performance of such a return buffer with 0-16 elements for a number of the
SPEC CPU95 benchmarks. We will use a similar return predictor when we exam-
ine the studies of ILP in Section 3.2.
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Figure 2.25 Prediction accuracy for a return address buffer operated as a stackon a
number of SPEC CPU95 benchmarks. The accuracy is the fraction of return addresses
predicted correctly. A buffer of 0 entries implies that the standard branch prediction is
used. Since call depths are typically not large, with some exceptions, a modest buffer
works well. This data comes from Skadron et al. (1999), and uses a fix-up mechanism to
prevent corruption of the cached return addresses.

Integrated Instruction Fetch Units

To meet the demands of multiple-issue processors, many recent designers have
chosen to implement an integrated instruction fetch unit, as a separate autono-
mous unit that feeds instructions to the rest of the pipeline. Essentially, this
amounts to recognizing that characterizing instruction fetch as a simple single
pipe stage given the complexities of multiple issue is no longer valid.

Instead, recent designs have used an integrated instruction fetch unit that inte-
grates several functions:

1. Integrated branch prediction—The branch predictor becomes part of the
instruction fetch unit and is constantly predicting branches, so as to drive the
fetch pipeline.

2. Instruction prefetch—To deliver multiple instructions per clock, the
instruction fetch unit will likely need to fetch ahead. The unit autonomously
manages the prefetching of instructions (see Chapter 5 for a discussion of
techniques for doing this), integrating it with branch prediction.
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3. Instruction memory access and buffering—When fetching multiple instruc-
tions per cycle a variety of complexities are encountered, including the diffi-
culty that fetching multiple instructions may require accessing multiple cache
lines. The instruction fetch unit encapsulates this complexity, using prefetch
to try to hide the cost of crossing cache blocks. The instruction fetch unit also
provides buffering, essentially acting as an on-demand unit to provide
instructions to the issue stage as needed and in the quantity needed.

As designers try to increase the number of instructions executed per clock,
instruction fetch will become an ever more significant bottleneck, and clever new
ideas will be needed to deliver instructions at the necessary rate. One of the
newer ideas, called trace caches and used in the Pentium 4, is discussed in
Appendix C.

Speculation: Implementation Issues and Extensions

In this section we explore three issues that involve the implementation of specu-
lation, starting with the use of register renaming, the approach that has almost
totally replaced the use of a reorder buffer. We then discuss one important possi-
ble extension to speculation on control flow: an idea called value prediction.

Speculation Support: Register Renaming versus Reorder Buffers

One alternative to the use of a reorder buffer (ROB) is the explicit use of a larger
physical set of registers combined with register renaming. This approach builds
on the concept of renaming used in Tomasulo’s algorithm and extends it. In
Tomasulo’s algorithm, the values of the architecturally visible registers (RO, . . .,
R31and FO, .. ., F31) are contained, at any point in execution, in some combina-
tion of the register set and the reservation stations. With the addition of specula-
tion, register values may also temporarily reside in the ROB. In either case, if the
processor does not issue new instructions for a period of time, all existing
instructions will commit, and the register values will appear in the register file,
which directly corresponds to the architecturally visible registers.

In the register-renaming approach, an extended set of physical registers is
used to hold both the architecturally visible registers as well as temporary values.
Thus, the extended registers replace the function of both the ROB and the reser-
vation stations. During instruction issue, .a renaming process maps the names of
architectural registers to physical register numbers in the extended register set,
allocating a new unused register for the destination. WAW and WAR hazards are
avoided by renaming of the destination register, and speculation recovery is han-
dled because a physical register holding an instruction destination does not
become the architectural register until the instruction commits. The renaming
map is a simple data structure that supplies the physical register number of the
register that currently corresponds to the specified architectural register. This
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structure is similar in structure and function to the register status table in Toma-
sulo’s algorithm. When an instruction commits, the renaming table is perma-
nently updated to indicate that a physical register corresponds to the actual
architectural register, thus effectively finalizing the update to the processor state.

An advantage of the renaming approach versus the ROB approach is that
instruction commit is simplified, since it requires only two simple actions: record
that the mapping between an architectural register number and physical register
number is no longer speculative, and free up any physical registers being used to
hold the “older” value of the architectural register. In a design with reservation
stations, a station is freed up when the instruction using it completes execution,
and a ROB entry is freed up when the corresponding instruction commits.

With register renaming, deallocating registers is more complex, since before
we free up a physical register, we must know that it no longer corresponds to an
architectural register, and that no further uses of the physical register are out-
standing. A physical register corresponds to an architectural register until the
architectural register is rewritten, causing the renaming table to point elsewhere.
That is, if no renaming entry points to a particular physical register, then it no
longer corresponds to an architectural register. There may, however, still be uses
of the physical register outstanding. The processor can determine whether this is
the case by examining the source register specifiers of all instructions in the func-
tional unit queues. If a given physical register does not appear as a source and it is
not designated as an architectural register, it may be reclaimed and reallocated.

Alternatively, the processor can simply wait until another instruction that
writes the same architectural register commits. At that point, there can be no fur-
ther uses of the older value outstanding. Although this method may tie up a phys-
ical register slightly longer than necessary, it is easy to implement and hence is
used in several recent superscalars.

One question you may be asking is, How do we ever know which registers are
the architectural registers if they are constantly changing? Most of the time when
the program is executing it does not matter. There are clearly cases, however,
where another process, such as the operating system, must be able to know
exactly where the contents of a certain architectural register reside. To understand
how this capability is provided, assume the processor does not issue instructions
for some period of time. Eventually all instructions in the pipeline will commit,
and the mapping between the architecturally visible registers and physical regis-
ters will become stable. At that point, a subset of the physical registers contains
the architecturally visible registers, and the value of any physical register not
associated with an architectural register is unneeded. It is then easy to move the
architectural registers to a fixed subset of physical registers so that the values can
be communicated to another process.

Within the past few years most high-end superscalar processors, including the
Pentium series, the MIPS R12000, and the Power and PowerPC processors, have
chosen to use register renaming, adding from 20 to 80 extra registers. Since all
results are allocated a new virtual register until they commit, these extra registers
replace a primary function of the ROB and largely determine how many instruc-
tions may be in execution (between issue and commit) at one time.
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How Much to Speculate

One of the significant advantages of speculation is its ability to uncover events
that would otherwise stall the pipeline early, such as cache misses. This potential
advantage, however, comes with a significant potential disadvantage. Speculation
is not free: it takes time and energy, and the recovery of incorrect speculation fur-
ther reduces performance. In addition, to support the higher instruction execution
rate needed to benefit from speculation, the processor must have additional
resources, which take silicon area and power. Finally, if speculation causes an
exceptional event to occur, such as a cache or TLB miss, the potential for signifi-
cant performance loss increases, if that event would not have occurred without
speculation.

To maintain most of the advantage, while minimizing the disadvantages, most
pipelines with speculation will allow only low-cost exceptional events (such as a
first-level cache miss) to be handled in speculative mode. If an expensive excep-
tional event occurs, such as a second-level cache miss or a translation lookaside
buffer (TLB) miss, the processor will wait until the instruction causing the event
is no longer speculative before handling the event. Although this may slightly
degrade the performance of some programs, it avoids significant performance
losses in others, especially those that suffer from a high frequency of such events
coupled with less-than-excellent branch prediction.

In the 1990s, the potential downsides of speculation were less obvious. As
processors have evolved, the real costs of speculation have become more appar-
ent, and the limitations of wider issue and speculation have been obvious. We
return to this issue in the next chapter.

Speculating through Multiple Branches

In the examples we have considered in this chapter, it has been possible to resolve
a branch before having to speculate on another. Three different situations can
benefit from speculating on multiple branches simultaneously: a very high branch
frequency, significant clustering of branches, and long delays in functional units.
In the first two cases, achieving high performance may mean that multiple
branches are speculated, and it may even mean handling more than one branch
per clock. Database programs, and other less structured integer computations,
often exhibit these properties, making speculation on multiple branches impor-
tant. Likewise, long delays in functional units can raise the importance of specu-
lating on multiple branches as a way to avoid stalls from the longer pipeline
delays.

Speculating on multiple branches slightly complicates the process of specula-
tion recovery, but is straightforward otherwise. A more complex technique is
predicting and speculating on more than one branch per cycle. The IBM Power2
could resolve two branches per cycle but did not speculate on any other instruc-
tions. As of 2005, no processor has yet combined full speculation with resolving
multiple branches per cycle.
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Value Prediction

One technique for increasing the amount of ILP available in a program is value
prediction. Value prediction attempts to predict the value that will be produced by
an instruction. Obviously, since most instructions produce a different value every
time they are executed (or at least a different value from a set of values), value
prediction can have only limited success. There are, however, certain instructions
for which it is easier to predict the resulting value—for example, loads that load
from a constant pool, or that load a value that changes infrequently. In addition,
when an instruction produces a value chosen from a small set of potential values,
it may be possible to predict the resulting value by correlating it without an
instance.

Value prediction is useful if it significantly increases the amount of available
ILP. This possibility is most likely when a value is used as the source of ‘a chain
of dependent computations, such as a load. Because value prediction is used to
enhance speculations and incorrect speculation has detrimental performance
impact, the accuracy of the prediction is critical.

Much of the focus of research on value prediction has been on loads. We can
estimate the maximum accuracy of a load value predictor by examining how
often a load returns a value that matches a value returned in a recent execution of
the load. The simplest case to examine is when the load returns a value that
matches the value on the last execution of the load. For a range of SPEC
CPU2000 benchmarks, this redundancy occurs from less than 5% of the time to
almost 80% of the time. If we allow the load to match any of the most recent 16
values returned, the frequency of a potential match increases, and many bench-
marks show a 80% match rate. Of course, matching 1 of 16 recent values does
not tell you what value to predict, but it does mean that even with additional
information it is impossible for prediction accuracy to exceed 80%.

Because of the high costs of misprediction and the likely case that mispredic-
tion rates will be significant (20% to 50%), researchers have focused on assessing
which loads are more predictable and only attempting to predict those. This leads
to a lower misprediction rate, but also fewer candidates for accelerating through
prediction. In the limit, if we attempt to predict only those loads that always
return the same value, it is likely that only 10% to 15% of the loads can be pre-
dicted. Research on value prediction continues. The results to date, however, have
not been sufficiently compelling that any commercial processor has included the
capability.

One simple idea that has been adopted and is related to value prediction is
address aliasing prediction. Address aliasing prediction is a simple technique that
predicts whether two stores or a load and a store refer to the same memory
address. If two such references do not refer to the same address, then they may be
safely interchanged. Otherwise, we must wait until the memory addresses
accessed by the instructions are known. Because we need not actually predict the
address values, only whether such values conflict, the prediction is both more sta-
ble and simpler. Hence, this limited form of address value speculation has been
used by a few processors.
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Putting It All Together: The Intel Pentium 4

The Pentium 4 is a processor with a deep pipeline supporting multiple issue with
speculation. In this section, we describe the highlights of the Pentium 4 microar-
chitecture and examine its performance for the SPEC CPU benchmarks. The
Pentium 4 also supports multithreading, a topic we discuss in the next chapter.

The Pentium 4 uses an aggressive out-of-order speculative microarchitecture,
called Netburst, that is deeply pipelined with the goal of achieving high instruc-
tion throughput by combining multiple issue and high clock rates. Like the mi-
croarchitecture used in the Pentium III, a front-end decoder translates each IA-32
instruction to a series of micro-operations (uops), which are similar to typical
RISC instructions. The uops are than executed by a dynamically scheduled spec-
ulative pipeline.

The Pentium 4 uses a novel execution trace cache to generate the uop instruc-
tion stream, as opposed to a conventional instruction cache that would hold IA-32
instructions. A trace cache is a type of instruction cache that holds sequences of
instructions to be executed including nonadjacent instructions separated by
branches; a trace cache tries to exploit the temporal sequencing of instruction ex-
ecution rather than the spatial locality exploited in a normal cache; trace caches
are explained in detail in Appendix C.

The Pentium 4’s execution trace cache is a trace cache of uops, corresponding
to the decoded 1A-32 instruction stream. By filling the pipeline from the execu-
tion trace cache, the Pentium 4 avoids the need to redecode IA-32 instructions
whenever the trace cache hits. Only on trace cache misses are IA-32 instructions
fetched from the L2 cache and decoded to refill the execution trace cache. Up to
three IA-32 instructions may be decoded and translated every cycle, generating
up to six uops; when a single 1A-32 instruction requires more than three uops, the
uop sequence is generated from the microcode ROM.

The execution trace cache has its own branch target buffer, which predicts the
outcome of uop branches. The high hit rate in the execution trace cache (for ex-
ample, the trace cache miss rate for the SPEC CPUINT2000 benchmarks is less
than 0.15%), means that the IA-32 instruction fetch and decode is rarely needed.

After fetching from the execution trace cache, the uops are executed by an
out-of-order speculative pipeline, similar to that in Section 2.6, but using register
renaming rather than a reorder buffer. Up to three uops per clock can be renamed
and dispatched to the functional unit queues, and three uops can be committed
each clock cycle. There are four dispatch ports, which allow a total of six uops to
be dispatched to the functional units every clock cycle. The load and store units
each have their own dispatch port, another port covers basic ALU operations, and
a fourth handles FP and integer operations. Figure 2.26 shows a diagram of the
microarchitecture.

Since the Pentium 4 microarchitecture is dynamically scheduled, uops do not
follow a simple static set of pipeline stages during their execution. Instead vari-
ous stages of execution (instruction fetch, decode, uop issue, rename, schedule,
execute, and retire) can take varying numbers of clock cycles. In the Pentium III,
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Figure 2.26 The Pentium 4 microarchitecture. The cache sizes represent the Pentium 4 640. Note that the instruc-
tions are usually coming from the trace cache; only when the trace cache misses is the front-end instruction prefetch
unit consulted. This figure was adapted from Boggs et al.[2004].

the minimum time for an instruction to go from fetch to retire was 11 clock
cycles, with instructions requiring multiple clock cycles in the execution stage
taking longer. As in any dynamically scheduled pipeline, instructions could take
much longer if they had to wait for operands. As stated earlier, the Pentium 4
introduced a much deeper pipeline, partitioning stages of the Pentium III pipeline
s0 as to achieve a higher clock rate. In the initial Pentium 4 introduced in 1990,
the minimum number of cycles to transit the pipeline was increased to 21, allow-
ing for a 1.5 GHz clock rate. In 2004, Intel introduced a version of the Pentium 4
with a 3.2 GHz clock rate. To achieve this high clock rate, further pipelining was
added so that a simple instruction takes 31 clock cycles to go from fetch to retire.
This additional pipelining, together with improvements in transistor speed,
allowed the clock rate to more than double over the first Pentium 4.

Obviously, with such deep pipelines and aggressive clock rates the cost of
cache misses and branch mispredictions are both very high A two-level cache is
used to minimize the frequency of DRAM accesses. Branch prediction is done
with a branch-target buffer using a two-level predictor with both local and global
branch histories; in the most recent Pentium 4, the size of the branch-target buffer
was increased, and the static predictor, used when the branch-target buffer
misses, was improved. Figure 2.27 summarizes key features of the microarchitec-
ture, and the caption notes some of the changes since the first version of the Pen-
tium 4 in 2000.
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Feature Size Comments

Front-end branch-target 4K entries Predicts the next IA-32 instruction to fetch; used only when the
buffer execution trace cache misses.

Execution trace cache 12K uops Trace cache used for uops.

Trace cache branch- 2K entries Predicts the next uop.

target buffer

Registers for renaming 128 total 128 uops can be in execution with up to 48 loads and 32 stores.

Functional units

7 total: 2 simple ALU,
complex ALU, load, store,
FP move, FP arithmetic

The simple ALU units run at twice the clock rate, accepting up
to two simple ALU uops every clock cycle. This allows
execution of two dependent ALU operations in a single clock
cycle.

L1 data cache

16 KB; 8-way associative;
64-byte blocks
write through

Integer load to use latency is 4 cycles; FP load to use latency is
12 cycles; up to 8 outstanding load misses.

L2 cache

2 MB; 8-way associative;
128-byte blocks
write back

256 bits to L1, providing 108 GB/sec; 18-cycle access time; 64
bits to memory capable of 6.4 GB/sec. A miss in L2 does not
cause an automatic update of L1.

Figure 2.27 Important characteristics of the recent Pentium 4 640 implementation in 90 nm technology (code
named Prescott). The newer Pentium 4 uses larger caches and branch-prediction buffers, allows more loads and
stores outstanding, and has higher bandwidth between levels in the memory system. Note the novel use of double-
speed ALUs, which allow the execution of back-to-back dependent ALU operations in a single clock cycle; having
twice as many ALUs, an alternative design point, would not allow this capability. The original Pentium 4 used a trace
cache BTB with 512 entries, an L1 cache of 8 KB, and an L2 cache of 256 KB.

An Analysis of the Performance of the Pentium 4

The deep pipeline of the Pentium 4 makes the use of speculation, and its depen-
dence on branch prediction, critical to achieving high performance. Likewise,
performance is very dependent on the memory system. Although dynamic sched-
uling and the large number of outstanding loads and stores supports hiding the
latency of cache misses, the aggressive 3.2 GHz clock rate means that L2 misses
are likely to cause a stall as the queues fill up while awaiting the completion of
the miss.

Because of the importance of branch prediction and cache misses, we focus
our attention on these two areas. The charts in this section use five of the integer
SPEC CPU2000 benchmarks and five of the FP benchmarks, and the data is cap-
tured using counters within the Pentium 4 designed for performance monitoring.
The processor is a Pentium 4 640 running at 3.2 GHz with an 800 MHz system
bus and 667 MHz DDR2 DRAMs for main memory.

Figure 2.28 shows the branch-misprediction rate in terms of mispredictions
per 1000 instructions. Remember that in terms of pipeline performance, what
matters is the number of mispredictions per instruction; the FP benchmarks gen-
erally have fewer branches per instruction (48 branches per 1000 instructions)
versus the integer benchmarks (186 branches per 1000 instructions), as well as
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Figure 2.28 Branch misprediction rate per 1000 instructions for five integer and
five floating-point benchmarks from the SPEC CPU2000 benchmark suite. This data
and the rest of the data in this section were acquired by John Holm and Dileep Bhan-
darkar of Intel.

better prediction rates (98% versus 94%). The result, as Figure 2.28 shows, is that
the misprediction rate per instruction for the integer benchmarks is more than 8
times higher than the rate for the FP benchmarks.

Branch-prediction accuracy is crucial in speculative processors, since incor-
rect speculation requires recovery time and wastes energy pursuing the wrong
path. Figure 2.29 shows the fraction of executed uops that are the result of mis-
speculation. As we would suspect, the misspeculation rate results look almost
identical to the misprediction rates.

How do the cache miss rates contribute to possible performance losses? The
trace cache miss rate is almost negligible for this set of the SPEC benchmarks,
with only one benchmark (186.craft) showing any significant misses (0.6%). The
L1 and L2 miss rates are more significant. Figure 2.30 shows the L1 and L2 miss
rates for these 10 benchmarks. Although the miss rate for L1 is about 14 times
higher than the miss rate for L2, the miss penalty for L2 is comparably higher,
and the inability of the microarchitecture to hide these very long misses means
that L2 misses likely are responsible for an equal or greater performance loss
than L1 misses, especially for benchmarks such as mcf and swim.

How do the effects of misspeculation and cache misses translate to actual per-
formance? Figure 2.31 shows the effective CPI for the 10 SPEC CPU2000
benchmarks. There are three benchmarks whose performance stands out from the
pack and are worth examining:
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Figure 2.29 The percentage of uop instructions issued that are misspeculated.
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Figure 2.30 L1 data cache and L2 cache misses per 1000 instructions for 10 SPEC CPU2000 benchmarks. Note
that the scale of the L1 misses is 10 times that of the L2 misses. Because the miss penalty for L2 is likely to be at least
10 times larger than for L1, the relative sizes of the bars are an indication of the relative performance penalty for the
misses in each cache. The inability to hide long L2 misses with overlapping execution will further increase the stalls
caused by L2 misses relative to L1 misses.
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Figure 2.31 The CP! for the 10 SPEC CPU benchmarks. An increase in the CPI by a fac-
tor of 1.29 comes from the translation of IA-32 instructions into uops, which results in
1.29 uops per IA-32 instruction on average for these 10 benchmarks.

1. mcf has a CPI that is more than four times higher than that of the four other
integer benchmarks. It has the worst misspeculation rate. Equally impor-
tantly, mcf has the worst L1 and the worst L2 miss rate among any bench-
mark, integer or floating point, in the SPEC suite. The high cache miss rates
make it impossible for the processor to hide significant amounts of miss
latency.

2. vpr achieves a CPI that is 1.6 times higher than three of the five integer
benchmarks (excluding mcf). This appears to arise from a branch mispredic-
tion that is the worst among the integer benchmarks (although not much
worse than the average) together with a high L2 miss rate, second only to mcf
among the integer benchmarks.

3. swim is the lowest performing FP benchmark, with a CPI that is more than
two times the average of the other four FP benchmarks. swim’s problems are
high L1 and L2 cache miss rates, second only to mcf. Notice that swim has
excellent speculation results, but that success can probably not hide the high
miss rates, especially in L2. In contrast, several benchmarks with reasonable
L1 miss rates and low L2 miss rates (such as mgrid and gzip) perform well.

To close this section, let’s look at the relative performance of the Pentium 4 and
AMD Opteron for this subset of the SPEC benchmarks. The AMD Opteron and
Intel Pentium 4 share a number of similarities:
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= Both use a dynamically scheduled, speculative pipeline capable of issuing
and committing three IA-32 instructions per clock.

m Both use a two-level on-chip cache structure, although the Pentium 4 uses a
trace cache for the first-level instruction cache and recent Pentium 4 imple-
mentations have larger second-level caches.

m They have similar transistor counts, die size, and power, with the Pentium 4
being about 7% to 10% higher on all three measures at the hlghcst clock rates
available in 2005 for these two processors.

The most significant difference is the very deep pipeline of the Intel Netburst
microarchitecture, which was designed to allow higher clock rates. Although com-
pilers optimized for the two architectures produce slightly different code
sequences, comparing CPI measures can provide important insights into how
these two processors compare. Remember that differences in the memory hierar-
chy as well as differences in the pipeline structure will affect these measurements;
we analyze the differences in memory system performance in Chapter 5. Figure
2.32 shows the CPI measures for a set of SPEC CPU2000 benchmarks for a 3.2
GHz Pentium 4 and a 2.6 GHz AMD Opteron. At these clock rates, the Opteron
processor has an average improvement in CPI by 1.27 over the Pentium 4.

Of course, we should expect the Pentium 4, with its much deeper pipeline, to
have a somewhat higher CPI than the AMD Opteron. The key question for the
very deeply pipelined Netburst design is whether the increase in clock rate,

‘which the deeper pipelining allows, overcomes the disadvantages of a higher

.

000 100 200 3.00 400 500 600 7.00 800 9.00 10.00 11.00 12.00 13.00 14.00

CPI

Figure 2.32 A 2.6 GHz AMD Opteron has a lower CPI by a factor of 1.27 versus a 3.2
GHz Pentium 4.
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Figure 2.33 The performance of a 2.8 GHz AMD Opteron versus a 3.8 GHz Intel Pen-
tium 4 shows a performance advantage for the Opteron of about 1.08.

CPL. We examine this by showing the SPEC CPU2000 performance for these two
processors at their highest available clock rate of these processors in 2005: 2.8
GHz for the Opteron and 3.8 GHz for the Pentium 4. These higher clock rates
will increase the effective CPI measurement versus those in Figure 2.32, since the
cost of a cache miss will increase. Figure 2.33 shows the relative performance on
the same subset of SPEC as Figure 2.32. The Opteron is slightly faster, meaning
that the higher clock rate of the Pentium 4 is insufficient to overcome the higher
CPI arising from more pipeline stalls.

Hence, while the Pentium 4 performs well, it is clear that the attempt to
achieve both high clock rates via a deep pipeline and high instruction throughput
via multiple issue is not as successful as the designers once believed it would be.
We discuss this topic in depth in the next chapter.

Fallacies and Pitfalls

Our first fallacy has two parts: First, simple rules do not hold, and, second, the
choice of benchmarks plays a major role.

Processors with lower CPIs will always be faster.
Processors with faster clock rates will always be faster.

Although a lower CPI is certainly better, sophisticated multiple-issue pipelines
typically have slower clock rates than processors with simple pipelines. In appli-
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cations with limited ILP or where the parallelism cannot be exploited by the
hardware resources, the faster clock rate often wins. But, when significant ILP
exists, a processor that exploits lots of ILP may be better.

The IBM Power5 processor is designed for high-performance integer and FP;
it contains two processor cores each capable of sustaining four instructions per
clock, including two FP and two load-store instructions. The highest clock rate
for a Power5 processor in 2005 is 1.9 GHz. In comparison, the Pentium 4 offers a
single processor with multithreading (see the next chapter). The processor can
sustain three instructions per clock with a very deep pipeline, and the maximum
available clock rate in 2005 is 3.8 GHz.

Thus, the Power5 will be faster if the product of the instruction count and CPI
is less than one-half the same product for the Pentium 4. As Figure 2.34 shows
the CPI x instruction count advantages of the Power5 are significant for the FP
programs, sometimes by more than a factor of 2, while for the integer programs
the CPI X instruction count advantage of the Power5 is usually not enough to
overcome the clock rate advantage of the Pentium 4. By comparing the SPEC
numbers, we find that the product of instruction count and CPI advantage for the
Power5 is 3.1 times on the floating-point programs but only 1.5 times on the inte-
ger programs. Because the maximum clock rate of the Pentium 4 in 2005 is
exactly twice that of the Power5, the Powers5 is faster by 1.5 on SPECfp2000 and
the Pentium 4 will be faster by 1.3 on SPECint2000.
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Figure 2.34 A comparison of the 1.9 GHZ IBM Power5 processor versus the 3.8 GHz
Intel Pentium 4 for 20 SPEC benchmarks (10 integer on the left and 10 floating
point on the right) shows that the higher clock Pentium 4 is generally faster for the
integer workload, while the lower CPI Power5 is usually faster for the floating-
point workload.
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Pitfall

Sometimes bigger and dumber is better.

Advanced pipelines have focused on novel and increasingly sophisticated
schemes for improving CPI. The 21264 uses a sophisticated tournament predictor
with a total of 29K bits (see page 88), while the earlier 21164 uses a simple 2-bit
predictor with 2K entries (or a total of 4K bits). For the SPEC95 benchmarks, the
more sophisticated branch predictor of the 21264 outperforms the simpler 2-bit
scheme on all but one benchmark. On average, for SPECint95, the 21264 has
11.5 mispredictions per 1000 instructions committed, while the 21164 has about
16.5 mispredictions.

Somewhat surprisingly, the simpler 2-bit scheme works better for the
transaction-processing workload than the sophisticated 21264 scheme (17
mispredictions versus 19 per 1000 completed instructions)! How can a predictor
with less than 1/7 the number of bits and a much simpler scheme actually work
better? The answer lies in the structure of the workload. The transaction-
processing workload has a very large code size (more than an order of magnitude
larger than any SPEC95 benchmark) with a large branch frequency. The ability of
the 21164 predictor to hold twice as many branch predictions based on purely
local behavior (2K versus the 1K local predictor in the 21264) seems to provide a
slight advantage.

This pitfall also reminds us that different applications can produce different
behaviors. As processors become more sophisticated, including specific microar-
chitectural features aimed at some particular program behavior, it is likely that
different applications will see more divergent behavior.

Concluding Remarks

The tremendous interest in multiple-issue organizations came about because of
an interest in improving performance without affecting the standard uniprocessor
programming model. Although taking advantage of ILP is conceptually simple,
the design problems are amazingly complex in practice. It is extremely difficult
to achieve the performance you might expect from a simple first-level analysis.

Rather than embracing dramatic new approaches in microarchitecture, most
of the last 10 years have focused on raising the clock rates of multiple-issue pro-
cessors and narrowing the gap between peak and sustained performance. The
dynamically scheduled, multiple-issue processors announced in the last five years
(the Pentium 4, IBM Power5, and the AMD Athlon and Opteron) have the same
basic structure and similar sustained issue rates (three to four instructions per
clock) as the first dynamically scheduled, multiple-issue processors announced in
1995! But the clock rates are 10-20 times higher; the caches are 4-8 times bigger,
there are 2—4 times as many renaming registers, and twice as many load-store
units! The result is performance that is 8—16 times higher.
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The trade-offs between increasing clock speed and decreasing CPI through
multiple issue are extremely hard to quantify. In the 1995 edition of this book, we
stated:

Although you might expect that it is possible to build an advanced multiple-issue
processor with a high clock rate, a factor of 1.5 to 2 in clock rate has consistently
separated the highest clock rate processors and the most sophisticated multiple-
issue processors. It is simply too early to tell whether this difference is due to
fundamental implementation trade-offs, or to the difficulty of dealing with the
complexities in multiple-issue processors, or simply a lack of experience in
implementing such processors.

Given the availability of the Pentium 4 at 3.8 GHz, it has become clear that
the limitation was primarily our understanding of how to build such processors.
As we will see in the next chapter, however, it appears unclear that the initial suc-
cess in achieving high-clock-rate processors that issue three to four instructions
per clock can be carried much further due to limitations in available ILP, effi-
ciency in exploiting that ILP, and power concerns. In addition, as we saw in the
comparison of the Opteron and Pentium 4, it appears that the performance advan-
tage in high clock rates achieved by very deep pipelines (20-30 stages) is largely
lost by additional pipeline stalls. We analyze this behavior further in the next
chapter.

One insight that was clear in 1995 and has become even more obvious in
2005 is that the peak-to-sustained performance ratios for multiple-issue proces-
sors are often quite large and typically grow as the issue rate grows. The lessons
to be gleaned by comparing the PowerS and Pentium 4, or the Pentium 4 and
Pentium III (which differ primarily in pipeline depth and hence clock rate, rather
than issue rates), remind us that it is difficult to generalize about clock rate versus
CPI, or about the underlying trade-offs in pipeline depth, issue rate, and other
characteristics.

A change in approach is clearly upon us. Higher-clock-rate versions of the
Pentium 4 have been abandoned. IBM has shifted to putting two processors on a
single chip in the Power4 and Power$ series, and both Intel and AMD have deliv-
ered early versions of two-processor chips. We will return to this topic in the next
chapter and indicate why the 20-year rapid pursuit of ILP seems to have reached
its end.

Historical Perspective and References

Section K.4 on the companion CD features a discussion on the development of
pipelining and instruction-level parallelism. We provide numerous references for
further reading and exploration of these topics.
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Case Studies with Exercises by Robert P. Colwell

Case Study 1: Exploring the Impact of Microarchitectural
Techniques

Concepts illustrated by this case study

= Basic Instruction Scheduling, Reordering, Dispatch
s Multiple Issue and Hazards

m Register Renaming

m  Out-of-Order and Speculative Execution

®  Where to Spend Out-of-Order Resources

You are tasked with designing a new processor microarchitecture, and you are
trying to figure out how best to allocate your hardware resources. Which of the

. hardware and software techniques you learned in Chapter 2 should you apply?

2.1

~ You have a list of latencies for the functional units and for memory, as well as

some representative code. Your boss has been somewhat vague about the perfor-
mance requirements of your new design, but you know from experience that, all
else being equal, faster is usually better. Start with the basics. Figure 2.35 pro-
vides a sequence of instructions and list of latencies.

[10] <1.8, 2.1, 2.2> What would be the baseline performance (in cycles, per loop
iteration) of the code sequence in Figure 2.35 if no new instruction execution
could be initiated until the previous instruction execution had completed? Ignore
front-end fetch and decode. Assume for now that execution does not stall for lack
of the next instruction, but only one instruction/cycle can be issued. Assume the
branch is taken, and that there is a 1 cycle branch delay slot.

Latencies beyond single cycle

Loop: LD F2,0(Rx) Memory LD +3
I10:  MULTD F2,F0,F2 Memory SD +1
I1: DIVD F8,F2,F0 Integer ADD, SUB +0
12: LD F4,0(Ry) Branches +1
I3: ADDD F4,FO,F4 ADDD +2
I4: ADDD F10,F8,F2 MULTD +4
I5:  SD F4,0(Ry) DIVD +10

16: ADDI  Rx,Rx,#8
17: ADDI  Ry,Ry,#8
I8: SUB R20,R4,Rx
19: BNZ R20, Loop

Figure 2.35 Code and latencies for Exercises 2.1 through 2.6.
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[10] <1.8, 2.1, 2.2> Think about what latency numbers really mean—they indicate
the number of cycles a given function requires to produce its output, nothing more.
If the overall pipeline stalls for the latency cycles of each functional unit, then you
are at least guaranteed that any pair of back-to-back instructions (a “producer” fol-
lowed by a “consumer”) will execute correctly. But not all instruction pairs have a
producer/consumer relationship. Sometimes two adjacent instructions have nothing
to do with each other. How many cycles would the loop body in the code sequence
in Figure 2.35 require if the pipeline detected true data dependences and only
stalled on those, rather than blindly stalling everything just because one functional
unit is busy? Show the code with <stal1> inserted where necessary to accommo-
date stated latencies. (Hint: An instruction with latency “+2” needs 2 <stall>
cycles to be inserted into the code sequence. Think of it this way: a 1-cycle instruc-
tion has latency 1 + 0, meaning zero extra wait states. So latency 1 + 1 implies 1
stall cycle; latency 1 + N has N extra stall cycles.)

[15] <2.6, 2.7> Consider a multiple-issue design. Suppose you have two execu-
tion pipelines, each capable of beginning execution of one instruction per cycle,
and enough fetch/decode bandwidth in the front end so that it will not stall your
execution. Assume results can be immediately forwarded from one execution unit
to another, or to itself. Further assume that the only reason an execution pipeline
would stall is to observe a true data dependence. Now how many cycles does the
loop require?

[10] <2.6, 2.7> In the multiple-issue design of Exercise 2.3, you may have recog-
nized some subtle issues. Even though the two pipelines have the exact same
instruction repertoire, they are not identical nor interchangeable, because there is

--an implicit ordering between them that must reflect the ordering of the instruc-

tions in the original program. If instruction N + 1 begins execution in Execution
Pipe 1 at the same time that instruction N begins in Pipe 0, and N + 1 happens to
require a shorter execution latency than N, then N + 1 will complete before N
(even though program ordering would have implied otherwise). Recite at least
two reasons why that could be hazardous and will require special considerations
in the microarchitecture. Give an example of two instructions from the code in
Figure 2.35 that demonstrate this hazard.

[20] <2.7> Reorder the instructions to improve performance of the code in Figure
2.35. Assume the two-pipe machine in Exercise 2.3, and that the out-of-order
completion issues of Exercise 2.4 have been dealt with successfully. Just worry
about observing true data dependences and functional unit latencies for now.
How many cycles does your reordered code take?

[10/10] <2.1, 2.2> Every cycle that does not initiate a new operation in a pipe is a
lost opportunity, in the sense that your hardware is not “living up to its potential.”

a. [10] <2.1, 2.2> In your reordered code from Exercise 2.5, what fraction of all
cycles, counting both pipes, were wasted (did not initiate a new op)?

b. [10]<2.1, 2.2> Loop unrolling is one standard compiler technique for finding
more parallelism in code, in order to minimize the lost opportunities for per-
formance.
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¢. Hand-unroll two iterations of the loop in your reordered code from Exercise
2.5. What speedup did you obtain? (For this exercise, just color the N + 1 iter-
ation’s instructions green to distinguish them from the Nth iteration’s; if you
were actually unrolling the loop you would have to reassign registers to pre-
vent collisions between the iterations.)

[15] <2.1> Computers spend most of their time in loops, so multiple loop itera-
tions are great places to speculatively find more work to keep CPU resources
busy. Nothing is ever easy, though; the compiler emitted only one copy of that
loop’s code, so even though multiple iterations are handling distinct data, they
will appear to use the same registers. To keep register usages multiple iterations
from colliding, we rename their registers. Figure 2.36 shows example code that
we would like our hardware to rename.

A compiler could have simply unrolled the loop and used different registers to
avoid conflicts, but if we expect our hardware to unroll the loop, it must also do
the register renaming. How? Assume your hardware has a pool of temporary reg-
isters (call them T registers, and assume there are 64 of them, TO through T63)
that it can substitute for those registers designated by the compiler. This rename
hardware is indexed by the source register designation, and the value in the table
is the T register of the last destination that targeted that register. (Think of these
table values as producers, and the src registers are the consumers; it doesn’t much
matter where the producer puts its result as long as its consumers can find it.)
Consider the code sequence in Figure 2.36. Every time you see a destination reg-
ister in the code, substitute the next available T, beginning with T9. Then update
all the src registers accordingly, so that true data dependences are maintained.
Show the resulting code. (Hint: See Figure 2.37.)

Loop: LD F2,0(Rx)
10:  MULTD F5,FO,F2
I11: DIVD F8,F0,F2
I2: LD F4,0(Ry)
I13: ADDD F6,FO,F4
14: ADDD F10,F8,F2
15: SD F4,0(Ry)

Figure 2.36 Sample code for register renaming practice.

I10: LD T9,0(Rx)
I1: MULTD T10,FO0,T9

Figure 2.37 Expected output of register renaming.
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I10: MULTD F5,F0,F2
I1: ADDD F9,F5,F4
I2: ADDD F5,F5,F2
I3: DIVD F2,F9,F0

Figure 2.38 Sample code for superscalar register renaming.

[20] <2.4> Exercise 2.7 explored simple register renaming: when the hardware
register renamer sees a source register, it substitutes the destination T register of
the last instruction to have targeted that source register. When the rename table
sees a destination register, it substitutes the next available T for it. But superscalar
designs need to handle multiple instructions per clock cycle at every stage in the
machine, including the register renaming. A simple scalar processor would there-
fore look up both src register mappings for each instruction, and allocate a new
destination mapping per clock cycle. Superscalar processors must be able to do
that as well, but they must also ensure that any dest-to-src relationships between
the two concurrent instructions are handled correctly. Consider the sample code
sequence in Figure 2.38. Assume that we would like to simultaneously rename
the first two instructions. Further assume that the next two available T registers to
be used are known at the beginning of the clock cycle in which these two instruc-
tions are being renamed. Conceptually, what we want is for the first instruction to
do its rename table lookups, and then update the table per its destination’s T reg-
ister. Then the second instruction would do exactly the same thing, and any inter-
instruction dependency would thereby be handled correctly. But there’s not
enough time to write that T register designation into the renaming table and then
look it up again for the second instruction, all in the same clock cycle. That regis-
ter substitution must instead be done live (in parallel with the register rename
table update). Figure 2.39 shows a circuit diagram, using multiplexers and com-
parators, that will accomplish the necessary on-the-fly register renaming. Your
task is to show the cycle-by-cycle state of the rename table for every instruction
of the code. Assume the table starts out with every entry equal to its index (TO = 0;
Ti=1,...).

[5] <2.4> If you ever get confused about what a register renamer has to do, go
back to the assembly code you're executing, and ask yourself what has to happen
for the right result to be obtained. For example, consider a three-way superscalar
machine renaming these three instructions concurrently:

ADDI R1, R1, R1
ADDI R1, R1, R1
ADDI R1, R1, R1

If the value of R1 starts out as 5, what should its value be when this sequence has
executed?
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Next available T register Rename table
77 This 9 appears -39
‘7 in the rename !
I tablein next M
i 44
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3 clock cycle 5% -}
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" dst=F5 =l | | } 28 dst=T9
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src2 = F4 for src 2)

Figure 2.39 Rename table and on-the-fly register substitution logic for superscalar
machines. (Note:“src” is source, “dst” is destination.)

Loop: LW R1,0(R2) ; LW R3,8(R2)
<stall>
<stall>
ADDI  R10,R1,#1; ADDI R11,R3,#1
SW R1,0(R2) ; SW R3,8(R2)

ADDI  R2,R2,#8
SuB R4,R3,R2
BNZ R4,Loop

Figure 2.40 Sample VLIW code with two adds, two loads, and two stalls.

210 [20] <24, 2.9> VLIW designers have a few basic choices to make regarding
architectural rules for register use. Suppose a VLIW is designed with self-drain-
ing execution pipelines: once an operation is initiated, its results will appear in
the destination register at most L cycles later (where L is the latency of the opera-
tion). There are never enough registers, so there is a temptation to wring maxi-
mum use out of the registers that exist. Consider Figure 2.40. If loads have a 1 +
2 cycle latency, unroll this loop once, and show how a VLIW capable of two
loads and two adds per cycle can use the minimum number of registers, in the
absence of any pipeline interruptions or stalls. Give an example of an event that,
in the presence of self-draining pipelines, could disrupt this pipelining and yield
wrong results.
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[10/10/10] <2.3> Assume a five-stage single-pipeline microarchitecture (fetch,
decode, execute, memory, write back) and the code in Figure 2.41. All ops are 1
cycle except LW and SW, which are 1 + 2 cycles, and branches, which are 1 + 1
cycles. There is no forwarding. Show the phases of each instruction per clock
cycle for one iteration of the loop.

a. [10] <2.3> How many clock cycles per loop iteration are lost to branch over-
head?

b. [10] <2.3> Assume a static branch predictor, capable of recognizing a back-
wards branch in the decode stage. Now how many clock cycles are wasted on
branch overhead?

¢. [10] <2.3> Assume a dynamic branch predictor. How many cycles are lost on
a correct prediction?

[20/20/20/10/20] <2.4, 2.7, 2.10> Let’s consider what dynamic scheduling might
achieve here. Assume a microarchitecture as shown in Figure 2.42. Assume that
the ALUs can do all arithmetic ops (MULTD, DIVD, ADDD, ADDI, SUB) and branches,
and that the Reservation Station (RS) can dispatch at most one operation to each
functional unit per cycle (one op to each ALU plus one memory op to the LD/ST
unit).

Loop: LW R1,0(R2)
ADDI  R1,R1,#1
SW R1,0(R2)
ADDI  R2,R2,#4
SuB R4,R3,R2
BNZ  R4,Loop

Figure 2.41 Code loop for Exercise 2.11.

Instructions
from decoder

1 ——
Reservation E ] ALUN
station
22—

LD/ST |—— Mem

Figure 2.42 An out-of-order microarchitecture.



148

Chapter Two Instruction-Level Parallelism and Its Exploitation

[15] <2.4> Suppose all of the instructions from the sequence in Figure 2.35
are present in the RS, with no renaming having been done. Highlight any
instructions in the code where register renaming would improve performance.
Hint: Look for RAW and WAW hazards. Assume the same functional unit
latencies as in Figure 2.35.

. [20] <2.4> Suppose the register-renamed version of the code from part (a) is

resident in the RS in clock cycle N, with latencies as given in Figure 2.35.
Show how the RS should dispatch these instructions out-of-order, clock by
clock, to obtain optimal performance on this code. (Assume the same RS
restrictions as in part (a). Also assume that results must be written into the RS
before they’re available for use; i.e., no bypassing.) How many clock cycles
does the code sequence take?

[20] <2.4> Part (b) lets the RS try to optimally schedule these instructions.
But in reality, the whole instruction sequence of interest is not usually present
in the RS. Instead, various events clear the RS, and as a new code sequence
streams in from the decoder, the RS must choose to dispatch what it has. Sup-
pose that the RS is empty. In cycle O the first two register-renamed instruc-
tions of this sequence appear in the RS. Assume it takes 1 clock cycle to
dispatch any op, and assume functional unit latencies are as they were for
Exercise 2.2. Further assume that the front end (decoder/register-renamer)
will continue to supply two new instructions per clock cycle. Show the cycle-
by-cycle order of dispatch of the RS. How many clock cycles does this code
sequence require now?

. [10] <2.10> If you wanted to improve the results of part (c), which would

have helped most: (1) another ALU; (2) another LD/ST unit; (3) full bypass-
ing of ALU results to subsequent operations; (4) cutting the longest latency in
half? What’s the speedup?

[20] <2.7> Now let’s consider speculation, the act of fetching, decoding, and
executing beyond one or more conditional branches. Our motivation to do
this is twofold: the dispatch schedule we came up with in part (c) had lots of
nops, and we know computers spend most of their time executing loops
(which implies the branch back to the top of the loop is pretty predictable.)
Loops tell us where to find more work to do; our sparse dispatch schedule
suggests we have opportunities to do some of that work earlier than before. In
part (d) you found the critical path through the loop. Imagine folding a sec-
ond copy of that path onto the schedule you got in part (b). How many more
clock cycles would be required to do two loops’ worth of work (assuming all
instructions are resident in the RS)? (Assume all functional units are fully
pipelined.)
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Case Study 2: Modeling a Branch Predictor

Concept illustrated by this case study
m  Modeling a Branch Predictor

Besides studying microarchitecture techniques, to really understand computer
architecture you must also program computers. Getting your hands dirty by
directly modeling various microarchitectural ideas is better yet. Write a C or Java
program to model a 2,1 branch predictor. Your program will read a series of lines
from a file named history.txt (available on the companion CD—see Figure Figure
2.43).

Each line of that file has three data items, separated by tabs. The first datum
on each line is the address of the branch instruction in hex. The second datum is
the branch target address in hex. The third datum is a 1 or a 0; 1 indicates a taken
branch, and 0 indicates not taken. The total number of branches your model will
consider is, of course, equal to the number of lines in the file. Assume a direct-
mapped BTB, and don’t worry about instruction lengths or alignment (i.e., if
your BTB has four entries, then branch instructions at 0x0, 0x1, 0x2, and 0x3
will reside in those four entries, but a branch instruction at 0x4 will overwrite
BTBI0]). For each line in the input file, your model will read the pair of data val-
ues, adjust the various tables per the branch predictor being modeled, and collect
key performance statistics. The final output of your program will look like that
shown in Figure 2.44.

Make the number of BTB entries in your model a command-line option.

[20/10/10/10/10/10/10} <2.3> Write a model of a simple four-state branch target
buffer with 64 entries.

a. [20] <2.3> What is the overall hit rate in the BTB (the fraction of times a
branch was looked up in the BTB and found present)?

0x40074cdb 0x40074cdf 1
0x40074ce2 0x40078d12 O
0x4009a247 0x4009%a2bb O
0x4009a259 0x400%a2c8 O
0x4009a267 0x4009%a2ac 1
0x4009a2b4 0x4009%a2ac 1

Address of branch
instruction

|

Branch target
address

|

1: taken
0: not taken

Figure 2.43 Sample history.txt input file format.
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b. [10] <2.3> What is the overall branch misprediction rate on a cold start (the
fraction of times a branch was correctly predicted taken or not taken, regard-
less of whether that prediction “belonged to” the branch being predicted)?

¢. [10] <2.3> Find the most common branch. What was its contribution to the
overall number of correct predictions? (Hint: Count the number of times that
branch occurs in the history.txt file, then track how each instance of that
branch fares within the BTB model.)

d. [10] <2.3> How many capacity misses did your branch predictor suffer?
e. [10] <2.3> What is the effect of a cold start versus a warm start? To find out,

run the same input data set once to initialize the history table, and then again
to collect the new set of statistics.

f.  [10] <2.3> Cold-start the BTB 4 more times, with BTB sizes 16, 32, and 64.
Graph the resulting five misprediction rates. Also graph the five hit rates.

g. [10] Submit the well-written, commented source code for your branch target
buffer model.
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Exercise 2.13 (a)
Number of hits BTB: 54390. Total brs: 55493. Hit rate: 99.8%

Exercise 2.13 (b)
Incorrect predictions: 1562 of 55493, or 2.8%

Exercise 2.13 (¢)
<a simple unix command line shell script will give you the most
common branch...show how you got it here.>
Most signif. branch seen 15418 times, out of 55493 tot brs ;
27.8%
MS branch = 0x80484ef, correct predictions = 19151 (of 36342
total correct preds) or 52.7%

Exercise 2.13 (d)
Total unique branches (1 miss per br compulsory): 121
Total misses seen: 104.
So total capacity misses = total misses — compulsory misses = 17
Exercise 2.13 (e)
Number of hits in BTB: 54390. Total brs: 55493. Hit rate: 99.8%
Incorrect predictions: 1103 of 54493, or 2.0%

Exercise 2.13 (f)

BTB Length mispredict rate

1 32.91%
2 6.42%
4 0.28%
8 0.23%
16 0.21%
32 0.20%
64 0.20%

Figure 2.44 Sample program output format.
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